在线看片av久草草视频观看|日韩一级片手机在线观看|91人人看人人日韩无码第1页|国产一级无码成人片|精品国产乱伦一区二区三区|欧美极品精品在线|日本无码网站亚洲无码一二区|成人免费电影无码日韩|深爱激情乱伦五月天|欧洲亚洲有码无码a v

方案

數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計(jì)

時(shí)間:2022-10-08 03:22:04 方案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計(jì)

  以下是數(shù)學(xué)網(wǎng)為您推薦的7.2解二元一次方程組教案,希望本篇文章對(duì)您學(xué)習(xí)有所幫助。

數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計(jì)

  7.2解二元一次方程組

  一.教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.代入消元法解二元一次方程組.

  2.解二元一次方程組時(shí)的消元思想,化未知為已知的化歸思想.

  (二)能力訓(xùn)練要求

  1.會(huì)用代入消元法解二元一次方程組.

  2.了解解二元一次方程組的消元思想,初步體會(huì)數(shù)學(xué)研究中化未知為已知的化歸思想.

  (三)情感與價(jià)值觀要求

  1.在學(xué)生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復(fù)雜問(wèn)題為簡(jiǎn)單問(wèn)題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,提高學(xué)習(xí)數(shù)學(xué)的信心.

  2.培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣.

  二.教學(xué)重點(diǎn)

  1.會(huì)用代入消元法解二元一次方程組.

  2.了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中化未知為已知的化歸思想.

  三.教學(xué)難點(diǎn)

  1.消元的思想.

  2.化未知為已知的化歸思想.

  四.教學(xué)方法

  啟發(fā)自主探索相結(jié)合.

  教師引導(dǎo)學(xué)生回憶一元一次方程解決實(shí)際問(wèn)題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過(guò)學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.

  五.教具準(zhǔn)備

  投影片兩張:

  第一張:例題(記作7.2 A);

  第二張:?jiǎn)栴}串(記作7.2 B).

  六.教學(xué)過(guò)程

  Ⅰ.提出疑問(wèn),引入新課

  [師生共憶](méi)上節(jié)課我們討論過(guò)一個(gè)希望工程義演的問(wèn)題;沒(méi)去觀看義演的成人有x個(gè),兒童有y個(gè),我們得到了方程組 成人和兒童到底去了多少人呢?

  [生]在上一節(jié)課的做一做中,我們通過(guò)檢驗(yàn) 是不是方程x+y=8和方程5x+3y=34,得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個(gè)人和3個(gè)人.

  [師]但是,這個(gè)解是試出來(lái)的.我們知道二元一次方程的解有無(wú)數(shù)個(gè).難道我們每個(gè)方程組的解都去這樣試?

  [生]太麻煩啦.

  [生]不可能.

  [師]這就需要我們學(xué)習(xí)二元一次方程組的解法.

  Ⅱ.講授新課

  [師]在七年級(jí)第一學(xué)期我們學(xué)過(guò)一元一次方程,也曾碰到過(guò)希望工程義演問(wèn)題,當(dāng)時(shí)是如何解的呢?

  [生]解:設(shè)成人去了x個(gè),兒童去了(8-x)個(gè),根據(jù)題意,得:

  5x+3(8-x)=34

  解得x=5

  將x=5代入8-x=8-5=3

  答:成人去了5個(gè),兒童去了3個(gè).

  [師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?

  [生]列二元一次方程組設(shè)出有兩個(gè)未知數(shù)成人去了x個(gè),兒童去了y個(gè).列一元一次方程設(shè)成人去了x個(gè),兒童去了(8-x)個(gè).y應(yīng)該等于(8-x).而由二元一次方程組的一個(gè)方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.

  [生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個(gè)方程5x+3y=34相比較,把5x+3y=34中的y用8-x代替就轉(zhuǎn)化成了一元一次方程.

  [師]太好了.我們發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問(wèn)題的方法即將新知識(shí)轉(zhuǎn)化為舊知識(shí)便可.如何轉(zhuǎn)化呢?

  [生]上一節(jié)課我們就已知道方程組的兩個(gè)未知數(shù)所包含的意義是相同的.所以將 中的①變形,得y=8-x ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.二元化成一元.

  [師]這位同學(xué)很善于思考.他用了我們?cè)跀?shù)學(xué)研究中化未知為已知的化歸思想,從而使問(wèn)題得到解決.下面我們完整地解一下這個(gè)二元一次方程組.

  解:

  由①得 y=8-x ③

  將③代入②得

  5x+3(8-x)=34

  解得x=5

  把x=5代入③得y=3.

  所以原方程組的解為

  下面我們?cè)囍眠@種方法來(lái)解答上一節(jié)的誰(shuí)的包裹多的問(wèn)題.

  [師生共析]解二元一次方程組:

  分析:我們解二元一次方程組的第一步需將其中的一個(gè)方程變形用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.

  解:由①得x=2+y ③

  將③代入②得(2+y)+1=2(y-1)

  解得y=5

  把y=5代入③,得

  x=7.

  所以原方程組的解為 即老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹.

  [師]在解上面兩個(gè)二元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入第二個(gè)未變形的方程,從而由二元轉(zhuǎn)化為一元而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們?cè)賮?lái)看兩個(gè)例子.

  出示投影片(7.2 A)

  [例題]解方程組

  (1)

  (2)

  (由學(xué)生自己完成,兩個(gè)同學(xué)板演).

  解:(1)將②代入①,得

  3 +2y=8

  3y+9+4y=16

  7y=7

  y=1

  將y=1代入②,得

  x=2

  所以原方程組的解是

  (2)由②,得x=13-4y ③

  將③代入①,得

  2(13-4y)+3y=16

  -5y=-10

  y=2

  將y=2代入③,得

  x=5

  所以原方程組的解是

  [師]下面我們來(lái)討論幾個(gè)問(wèn)題:

  出示投影片(7.2 B)

  (1)上面解方程組的基本思路是什么?

  (2)主要步驟有哪些?

  (3)我們觀察例1和例2的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡(jiǎn)單和代入后化簡(jiǎn)比較容易的方程變形,這是關(guān)鍵的一步.你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?

  (由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過(guò)程中的獨(dú)特想法)

  [生]我來(lái)回答第一問(wèn):解二元一次方程組的基本思路是消元,把二元變?yōu)橐辉?

  [生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠,把它變形為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù).

  第二步:把表示另一個(gè)未知數(shù)的代數(shù)式代入沒(méi)有變形的另一個(gè)方程,可得一個(gè)一元一次方程.

  第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值.

  第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程(一般代入變形后的方程),求得另一個(gè)未知數(shù)的值.

  第五步:用{把原方程組的解表示出來(lái).

  第六步:檢驗(yàn)(口算或筆算在草稿紙上進(jìn)行)把求得的解代入每一個(gè)方程看是否成立.

  [師]這個(gè)組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時(shí)容易忽略的檢驗(yàn)問(wèn)題也提了出來(lái),很值得提倡.在我們數(shù)學(xué)學(xué)習(xí)的過(guò)程中,應(yīng)該養(yǎng)成反思自己解答過(guò)程,檢驗(yàn)自己答案正確與否的習(xí)慣.

  [生]老師,我代表我們組來(lái)回答第三個(gè)問(wèn)題.我們認(rèn)為用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的分?jǐn)?shù)是1的方程進(jìn)行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對(duì)值較小的方程變形.但我們也有一個(gè)問(wèn)題要問(wèn):在例2中,我們選擇②變形這是無(wú)可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡(jiǎn)便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡(jiǎn)便,有沒(méi)有更簡(jiǎn)捷的方法呢?

  [師]這個(gè)問(wèn)題提的太好了.下面同學(xué)們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請(qǐng)把你的解答過(guò)程寫(xiě)到黑板上來(lái).

  [生]解:由②得2x=y+3 ③

 、蹆蛇呁瑫r(shí)乘以2,得

  4x=2y+6 ④

  由④得2y=4x-6

  把⑤代入①得

  3x+(4x-6)=8

  解得7x=14,x=2

  把x=2代入③得y=1.

  所以原方程組的解為

  [師]真了不起,能把我們所學(xué)的知識(shí)靈活應(yīng)用,而且不拘一格,將2y整體上看作一個(gè)未知數(shù)代入方程①,這是一個(gè)科學(xué)的發(fā)明.

 、.隨堂練習(xí)

  課本P192

  1.用代入消元法解下列方程組

  解:(1)

  將①代入②,得

  x+2x=12

  x=4.

  把x=4代入①,得

  y=8

  所以原方程組的解為

  (2)

  將①代入②,得

  4x+3(2x+5)=65

  解得x=5

  把x=5代入①得

  y=15

  所以原方程組的解為

  (3)

  由①,得x=11-y ③

  把③代入②,得

  11-y-y=7

  y=2

  把y=2代入③,得

  x=9

  所以原方程組的解為

  (4)

  由②,得x=3-2y ③

  把③代入①,得

  3(3-2y)-2y=9

  得y=0

  把y=0代入③,得x=3

  所以原方程組的解為

  注:在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過(guò)自主探索與交流,各個(gè)學(xué)生消元的具體方法可能不同,不必強(qiáng)調(diào)解答過(guò)程統(tǒng)一.

 、.課時(shí)小結(jié)

  這節(jié)課我們介紹了二元一次方程組的第一種解法代入消元法.了解到了解二元一次方程組的基本思路是消元即把二元變?yōu)橐辉?主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程的解.

 、.課后作業(yè)

  1.課本習(xí)題7.2

  2.解答習(xí)題7.2第3題

 、.活動(dòng)與探究

  已知代數(shù)式x2+px+q,當(dāng)x=-1時(shí),它的值是-5;當(dāng)x=-2時(shí),它的值是4,求p、q的值.

  過(guò)程:根據(jù)代數(shù)式值的意義,可得兩個(gè)未知數(shù)都是p、q的方程,即

  當(dāng)x=-1時(shí),代數(shù)式的值是-5,得

  (-1)2+(-1)p+q=-5 ①

  當(dāng)x=-2時(shí),代數(shù)式的值是4,得

  (-2)2+(-2)p+q=4 ②

  將①、②兩個(gè)方程整理,并組成方程組

  解方程組,便可解決.

  結(jié)果:由④得q=2p

  把q=2p代入③,得

  -p+2p=-6

  解得p=-6

  把p=-6代入q=2p=-12

  所以p、q的值分別為-6、-12.

  七.板書(shū)設(shè)計(jì)

  7.2 解二元一次方程組(一)

  一、希望工程義演

  二、誰(shuí)的包裹多問(wèn)題

  三、例題

  四、解方程組的基本思路:消元即二元一元

  五、解二元一次方程組的基本步驟

【數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計(jì)】相關(guān)文章:

初中數(shù)學(xué)《二元一次方程組》的教學(xué)教案10-08

數(shù)學(xué)列方程解應(yīng)用題教學(xué)方案設(shè)計(jì)10-08

初一數(shù)學(xué)下冊(cè)《二元一次方程組的解法--代入消元法》教學(xué)方案10-08

談?wù)劧淮畏匠探M中的消元方法10-26

數(shù)學(xué)教學(xué)方案設(shè)計(jì)10-08

七年級(jí)數(shù)學(xué)二元一次方程組教案優(yōu)秀05-17

七年級(jí)數(shù)學(xué)二元一次方程組解法教案10-08

籃球數(shù)學(xué)教學(xué)方案設(shè)計(jì)10-08

數(shù)學(xué):圓的教學(xué)方案設(shè)計(jì)10-08

數(shù)學(xué)乘法教學(xué)方案設(shè)計(jì)10-08